On an elliptic boundary value problem at double resonance

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Nonlinear Elliptic Boundary Value Problem

Consider a bounded domain G C R (_N>1) with smooth boundary T . Let L be a uniformly elliptic linear differential operator. Let y and ß be two maximal monotone mappings in R. We prove that, when y ? 2 satisfies a certain growth condition, given f £ L (G ) there is u € H (G) such that Lu + y(u) 3 f a.e. on G, and -du/d v e ß(u\ ) a.e. on T, where du/civ is the conormal derivative associated with...

متن کامل

On an Eighth Order Overdetermined Elliptic Boundary Value Problem

We consider the overdetermined boundary value problem for the 4-harmonic operator, Δ4 = Δ(Δ3) , and show that if the solution of the problem exists, then the domain must be an open N -ball (N 2) . As a consequence of overdetermined problems mean value results are obtained for harmonic, biharmonic, triharmonic and 4-harmonic functions. Mathematics subject classification (2010): 35J25, 35P15, 35B50.

متن کامل

Multiple Solutions For Semilinear Elliptic Boundary Value Problems At Resonance

In recent years several nonlinear techniques have been very successful in proving the existence of weak solutions for semilinear elliptic boundary value problems at resonance. One technique involves a variational approach where solutions are characterized as saddle points for a related functional. This argument requires that the Palais-Smale condition and some coercivity conditions are satisfie...

متن کامل

Approximation of an elliptic boundary value problem with unilateral constraints

— In this paper we show how a method of J. Nitsche for the approximation of elliptic boundary value problems can be applied to obtain an approximation scheme and « optimal » error estimate for the approximation of a certain variational inequality.

متن کامل

An Inverse Boundary-value Problem for Semilinear Elliptic Equations

We show that in dimension two or greater, a certain equivalence class of the scalar coefficient a(x, u) of the semilinear elliptic equation ∆u + a(x, u) = 0 is uniquely determined by the Dirichlet to Neumann map of the equation on a bounded domain with smooth boundary. We also show that the coefficient a(x, u) can be determined by the Dirichlet to Neumann map under some additional hypotheses.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1988

ISSN: 0022-247X

DOI: 10.1016/0022-247x(88)90075-3